can Sort array
XXX. Can Sort Array
Greedy
Array
Problem Statement:
Given an array of integers nums
, determine if it can be partitioned into segments where:
- All numbers in a segment have the same number of set bits in their binary representation.
- Each segment is sorted in ascending order.
- Segments are sorted in ascending order based on their minimum values.
true
if the array meets these conditions; otherwise, return false
.
Approach:
- Initialize tracking variables:
- The number of set bits for the current segment.
- The maximum and minimum values of the current segment.
- The maximum value of the previous segment to ensure proper ordering.
- Iterate through the array:
- If the current number has the same number of set bits as the current segment, update the segment's minimum and maximum values.
- If not, check whether the previous segment is sorted correctly relative to the current one. If not, return
false
. - Start a new segment with the current number.
- Perform a final check for the last segment to ensure proper ordering.
- Return
true
if all checks pass.
Java Implementation:
// Function to determine if the array can be sorted into valid segments
public boolean canSortArray(int[] nums) {
// Number of set bits of the elements in the current segment
int numOfSetBits = Integer.bitCount(nums[0]);
int maxOfSegment = nums[0];
int minOfSegment = nums[0];
// Initialize max of the previous segment to the smallest possible integer
int maxOfPrevSegment = Integer.MIN_VALUE;
for (int i = 1; i < nums.length; i++) {
if (Integer.bitCount(nums[i]) == numOfSetBits) {
// Current number belongs to the same segment
// Update the segment's minimum and maximum values
maxOfSegment = Math.max(maxOfSegment, nums[i]);
minOfSegment = Math.min(minOfSegment, nums[i]);
} else {
// Current number starts a new segment
// Check if the previous segment is sorted correctly
if (minOfSegment < maxOfPrevSegment) return false;
// Update tracking variables for the new segment
maxOfPrevSegment = maxOfSegment;
maxOfSegment = nums[i];
minOfSegment = nums[i];
numOfSetBits = Integer.bitCount(nums[i]);
}
}
// Final check to ensure the last segment is properly ordered
if (minOfSegment < maxOfPrevSegment) return false;
return true;
}
Key Insights:
- Set Bits: Use
Integer.bitCount()
to calculate the number of 1s in the binary representation of a number. - Segment Validation: Each segment is checked for internal sorting and proper ordering relative to other segments.
- Greedy Approach: Process each element while maintaining minimal additional data, making the solution efficient.
Complexity Analysis:
Time Complexity: O(n)
, where n
is the size of the array.
Space Complexity: O(1)
, as no extra data structures are used apart from a few variables.