Regions by slashes
XXX. Regions by Slashes
Problem Statement:
Given a n x n
grid where each cell contains a slash ('/'), backslash ('\\'), or space (' '),
determine the number of regions formed. A region is defined as a connected component of slashes, backslashes,
or empty spaces, including the borders of the grid.
Example:
Approach:
- Model the grid as a graph where each cell corresponds to edges between points on its corners.
- Use a Union-Find (disjoint-set) data structure to manage connections between points.
-
For each cell, interpret slashes ('/') and backslashes ('\\') as connections between specific corners:
- '/' connects the top-right corner to the bottom-left corner.
- '\\' connects the top-left corner to the bottom-right corner.
- Iterate through the grid and attempt to "union" connected points.
- If a "union" operation detects two points already in the same set, increment the region count.
- Return the total number of regions formed.
Algorithm Intuition:
The problem is effectively about counting connected components in a graph. By treating the grid as a graph where corners are nodes and slashes/backslashes are edges, we can use Union-Find to group connected nodes. Each time we encounter a cycle in the graph, it indicates the presence of a new region.
Complexity:
Time Complexity: O(n² α(n²)), where n
is the grid size and α is the inverse Ackermann function.
Space Complexity: O(n²), for the Union-Find data structure and grid points.
Java Implementation:
// Union-Find solution for Regions by Slashes
public class Solution {
public int regionsBySlashes(String[] grid) {
int gridSize = grid.length;
int pointsPerSide = gridSize + 1;
int totalPoints = pointsPerSide * pointsPerSide;
// Initialize disjoint set data structure
int[] parentArray = new int[totalPoints];
Arrays.fill(parentArray, -1);
// Connect border points
for (int i = 0; i < pointsPerSide; i++) {
for (int j = 0; j < pointsPerSide; j++) {
if (i == 0 || j == 0 || i == pointsPerSide - 1 || j == pointsPerSide - 1) {
int point = i * pointsPerSide + j;
parentArray[point] = 0; // Union with border
}
}
}
// Set the parent of the top-left corner to itself
parentArray[0] = -1;
int regionCount = 1; // Start with one region (the border)
// Process each cell in the grid
for (int i = 0; i < gridSize; i++) {
for (int j = 0; j < gridSize; j++) {
// Treat each slash as an edge connecting two points
if (grid[i].charAt(j) == '/') {
int topRight = i * pointsPerSide + (j + 1);
int bottomLeft = (i + 1) * pointsPerSide + j;
regionCount += union(parentArray, topRight, bottomLeft);
} else if (grid[i].charAt(j) == '\\') {
int topLeft = i * pointsPerSide + j;
int bottomRight = (i + 1) * pointsPerSide + (j + 1);
regionCount += union(parentArray, topLeft, bottomRight);
}
}
}
return regionCount;
}
// Find the parent of a set
private int find(int[] parentArray, int node) {
if (parentArray[node] == -1) return node;
return parentArray[node] = find(parentArray, parentArray[node]); // Path compression
}
// Union two sets and return 1 if a new region is formed, 0 otherwise
private int union(int[] parentArray, int node1, int node2) {
int parent1 = find(parentArray, node1);
int parent2 = find(parentArray, node2);
if (parent1 == parent2) {
return 1; // Nodes are already in the same set, new region formed
}
parentArray[parent2] = parent1; // Union the sets
return 0; // No new region formed
}
}