Zero array Transformation I, II
XXX. Zero Array Difference
Problem Statement:
You are given an array nums
of integers and a list of queries queries
. Each query consists of one of the following:
- For Zero Array Difference, each query is a range
[start, end]
that decrements all elements in the range by 1. - For Zero Array Transformation II, each query is a range
[start, end, val]
that increments the range byval
.
The goal is to determine if it is possible to make all elements in nums
non-negative using the provided queries.
Algorithm:
Zero Array Difference:
- Initialize a Difference Array:
Create a difference array
diff
to represent incremental changes for range updates. - Process Each Query:
Decrement
diff[start]
and incrementdiff[end + 1]
to reflect the range decrement operation. - Apply the Difference Array:
Use cumulative sums to apply the effects of the difference array to
nums
. - Check Validity:
If any element in
nums
becomes negative, returnfalse
; otherwise, returntrue
.
Zero Array Transformation II:
- Binary Search:
Use binary search to determine the minimum number of queries required to make all elements non-negative.
- Range Updates with Difference Array:
Increment
diff[start]
and decrementdiff[end + 1]
for the firstm
queries. - Validation:
Check if applying the cumulative sums of the difference array satisfies the non-negativity condition for
nums
.
Complexity:
Zero Array Difference: O(n + q), where n
is the size of the array and q
is the number of queries.
Zero Array Transformation II: O((n + q) log(q)), due to the binary search over the queries.
Java Implementations:
Zero Array Difference:
class Solution {
// Difference Array Solution
public boolean isZeroArrayDiff(int[] nums, int[][] queries) {
int n = nums.length;
int[] diff = new int[n + 1]; // Difference array for range updates
// Process each query to update the difference array
for (int[] query : queries) {
int start = query[0]; // Start index of the range
int end = query[1]; // End index of the range
diff[start]--; // Decrement at the start of the range
if (end + 1 < n) diff[end + 1]++; // Increment just after the end of the range (if within bounds)
}
int cumulative = 0; // Variable to track cumulative range updates
for (int i = 0; i < n; i++) {
cumulative += diff[i]; // Calculate the cumulative effect on each index
nums[i] += cumulative; // Apply the cumulative effect to nums[i]
if (nums[i] < 0) return false; // If any value becomes negative, transformation fails
}
return true; // If all elements can be zeroed, return true
}
}
Zero Array Transformation II:
class Solution {
public int minZeroArray(int[] nums, int[][] queries) {
int n = nums.length;
// Check if all elements can be zeroed with all queries
if (!check(nums, queries, queries.length)) return -1;
// Binary search to find the minimum number of queries
int l = 0, r = queries.length;
while (l <= r) {
int m = l + (r - l) / 2;
if (check(nums, queries, m)) {
r = m - 1; // Try for fewer queries
} else {
l = m + 1; // Increase query range
}
}
return l; // Minimum number of queries required
}
private boolean check(int[] nums, int[][] queries, int m) {
int n = nums.length;
int[] arr = new int[n + 1]; // Difference array for range updates
// Apply only the first m queries
for (int i = 0; i < m; i++) {
int start = queries[i][0], end = queries[i][1], val = queries[i][2];
arr[start] += val;
if (end + 1 < n) arr[end + 1] -= val;
}
int cur = 0; // Cumulative sum to apply difference array
for (int i = 0; i < n; i++) {
cur += arr[i]; // Apply cumulative sum to nums[i]
if (cur < nums[i]) return false; // If any value cannot be zeroed, return false
}
return true; // All elements can be zeroed
}
}